

ROTARY BALL SPLINE SPR type

"Linear Motion" + "Rotation"

11 sizes are now available as standard product offering, from the miniature size (6mm) up to the large size (60mm).

2299 Amber Dr. Suite 120, Hatfield PA 19440 Toll Free: 800-314-3332 Fax: 215-631-9148

The NB rotary ball spline can be used for both rotational motion and linear motion. It can be used in scalar robots, the vertical shaft of assembly equipment, and tool changers and loaders.

STRUCTURE AND ADVANTAGES

The NB rotary ball spline consists of a spline shaft and a nut. The nut has a spline portion and a rotating portion.

Reduced Number of Parts:

Because of the single-body construction consisting of the rotating portion which is equipped with cross roller elements and the spline portion, the number of parts is reduced and the cumulative installation error is reduced.

Compact and Light:

The cross roller is directly attached to the ball spline's external cylinder, resulting in a compact and light design.

Figure 1 Structure of NB Rotary Ball Spline

Substantial Reduction in Installation Cost:

The use of cross roller elements keeps the housing thickness to a minimum, making the ball spline light and easy to install.

High Rigidity:

The cross roller elements and 4-row ball circuit structure provides high rigidity in spite of the compact design.

High Accuracy:

The cross roller elements ensure accurate positioning in the rotational direction.

The accuracy of the NB rotary ball spline is measured as shown in figure 2.

Figure 2 Accuracy Measurement Points

Table 1 Tolerance of Spline Shaft Groove Torsion (Max)

accuracy grade	high
tolerance	13 <i>µ</i> m/100mm

The groove torsion is indicated for 100mm, arbitrarily set as the effective length of the spline section. When the movement rate is under 100mm or exceeds 100mm, the value shown in the table 1 increases or decreases proportionally to the movement rate.

Table 2 Tolerance of Parts Relative to Spline Support Area unit/ μ m

part number	①radial run out of part attachment area	②perpendicularity of the end of the spline shaft section	③perpendicularly of the flange			
SPR 6	14					
SPR 8	14	9	14			
SPR10	17					
SPR13						
SPR16	19	11	18			
SPR20						
SPR25	22	10				
SPR30	22	13	21			
SPR40	05	16	25			
SPR50	20	10				
SPR60	29	19	29			

unit/ μ m

spline shaft		part number										
total length			SPD10	SDD13 16	SPP20 25 30	SPR40.50	SPP60					
greater than	or less	3F H0,0	SERIO	SFR13,10	3F H20,23,30	3F H40,30	3F N00					
	200	46	36	34	32	32	30					
200	315	89	54	45	39	36	34					
315	400	126	68	53	44	39	36					
400	500	163*	82	62	50	43	38					
500	630	-	102	75	57	47	41					
630	800	-	-	-	68	54	45					
800	1,000	-	-	_	83	63	51					
1,000	1,250			_	102	76	59					
1,250	1,600	-			130	93	70					
1,600	2,000	_	-	_	171	118	86					

*Contact NB for spline shafts exceeding 2000mm. SPR6 spline shaft wax. length : 400mm

OTECH, inc. 2299 Amber Dr. Suite 120, Hatfield PA 19440 Toll Free: 800-314-3332 Fax: 215-631-9148

PRE-LOAD AND CLEARANCE IN ROTATIONAL DIRECTIC

The amount of clearance and pre-load for the spline portion and the cross-roller portion are expressed in terms of the clearance in the rotational direction and the clearance in the radial direction, respectively. Three levels of pre-load are available: standard, light (T1), and medium (T2).

Table 4 Pre-Load and Clearance in Rotational Direction unit/ μ m									
	part number	standard	light (T1)	medium (T2)					
linear	SPR 6	-0a.±1	-600						
	SPR 8	-2.9+1	-0.0-2	_					
	SPR10								
	SPR13	$-3 \sim +1$	-8~-3	-1209					
	SPR16			-13-0-0					
	SPR20								
motion	SPR25	-4~+2	-12~-4	-20~-12					
	SPR30								
	SPR40								
	SPR50	-6~+3	$-18 \sim -6$	-30~-18					
	SPR60								
rotational	SPR 6	±5							
motion	~ SPR60								

Table 5 Operating Condition and Pre-Load

pre-load	symbol	operating condition
standard	blank	Minute vibration is applied. A precise motion is required. Moment is applied in a given direction.
light	T1	Light vibration is applied. Light torsional load is applied. Cyclic torque is applied.
medium	T2	Shock/vibration is applied. Over-hang load is applied. Torsional load is applied.

ECIAL REQUIREM

NB will fabricate special shaft ends, spline nuts, spline shafts, surface finish etc. to meet customer requirements. Contact NB for details.

Figure 3 Examples of Shaft End Machining

Table 6 recommended hollow shaft

part	outer dia.	inner dia.	modulus of section	giometrical moment of inertia					
number	mm	mm	mm³	mm⁴					
SPR 6	6	2	19.4	58					
SPR 8	8	3	46.5	186					
SPR10	10	4	89.6	448					
SPR13	13	6	193	1,260					
SPR16	16	8	348	2,780					
\$0 () () () () () () () () () (
Contact NB	for other size	es.	+						

OPERATING ENVIRONM

Certain operating environments may prevent the full functionality of the rotary ball spline from being achieved. The operating environment should be taken into consideration when designing the system.

Operating Temperature:

Resin retainers are used in the rotary ball spline, so the operating temperature should never exceed 80°C. **Dust Prevention:**

The invasion of foreign particles and dust may affect the motion characteristics of the rotary ball spline and shorten the travel life. Seals will perform well under normal operating conditions, but may not completely prevent the entry of dust in a hostile environment. When used in such environments, a dust prevention mechanism such as bellows or a cover should be used to protect the rotary ball spline.

MOUNTING OF ROTARY BA

The flange attachment bolts have been pre-adjusted for smooth rotary movement and should never be loosened. Shock loading to the flange assembly should be avoided as this can degrade the accuracy of movement and deteriorate the overall performance.

Mounting:

When the flange is to be used with a faucet joint (as shown in Figure 4) the housing bore should be machined to a tolerance of H7 and to a minimum depth of 60% of the flange thickness. If only a light load is applied to the SPR in operation, the flange can be used without a pilot end.

When the mounting bolts are applied, they should be tightened diagonally in steps with progressively more torque at each step. A torque wrench should be used to achieve uniform torque. The recommended torque values for medium-hardness steel bolts are listed in Table 7.

Insertion of Spline Shaft:

When inserting the rotary ball spline shaft into the spline nut, ensure that the ball elements do not drop out. This is accomplished by aligning the raceway grooves of the shaft with the rows of ball elements in the nut. Then simply insert the spline shaft through the spline nut.

IBRICATIO

Since NB rotary ball splines are equipped with seals at both the spline portion and the rotational portion, the lubricant is retained for an extended period of time. Lithium soap grease is applied prior to shipment, so they can be used immediately without having to apply lubricant. Lubricant should be added periodically and depending on the operating conditions.

A grease fitting can be installed as an optional feature for sizes 20 to 60, however, an oil lubricant should be used for high-speed applications. Contact NB for further details.

Figure 4 Flange mounting Method

Table 7 Recommended Torque

part number	installation bolt	recommended torque N · m
SPR 6	M2	0.6
SPR 8	M2.5	0.8
SPR10,13	M3	2.0
SPR16,20,25	M4	3.9
SPR30	M6	12.7
SPR40,50,60	M8	29.4

Figure 5 Example of Installed Grease Fitting (SPR 20~60)

SPR TYPE

	ball spline major dimensions							major dimensions of support bearing								
	C) 1	D ₂	I	L	P ₁	S	h	I	Н	[D₃	P ₂	d	G	θ°
part		tolerance			tolerance							tolerance				
number																
	mm	μm	mm	mm	mm	mm		mm	mm	mm	mm	μ m	mm			mm
SPR 6	20		13	25		16	M2	2.5	5	6.5	30	0/-21	24	2.4		
SPR 8	22	0	15	25	1	18	M2.5	3	6	6.5	33		27	2.9	ø 2	20°
SPR10	27	-21	19	33	0	22	М3	4	8	7	40	0	33	3.4		
SPR13	29		24	36	-0.2	24	МЗ	5	8	9	50	25	42	3.4	40	4 F °
SPR16	36		31	50		30	M4	6	10	11	60		50	4.5	φ3	15
SPR20	40	-25	34	60]	34	M4	7	12	13	66	0	56	4.5		
SPR25	50		40	70		42	M5	8	13	16	78		68	4.5		
SPR30	61	0	47	80		52	M6	10	17	17	100	0	86	6.6		1 5°
SPR40	76	-30	62	100	0	64	M6	10	23	20	120	-35	104	9	10 ~ 0.75	15
SPR50	88	0	75	112	0.0	77	M8	13	24	22	130	0	114	9		
SPR60	102	-35	90	127		90	M8	13	25	25	150	-40	132	9		

spline	shaft		ball spline				allov		support bearing			cross-	mass		*maximum	
C)s	basic tore	que rating	basic loa	ad rating	basic loa	ad rating	moment	moment of inertia	coefficient	nut	spline	speed			
	tolerance	dynamic	static	dynamic	static	dynamic	static					shaft		part number		
		Ст	Сот	С	Со	CR	C_{OR}	Мо								
mm	μm	N۰m	N۰m	kN	kN	kN	kN	N۰m	mm⁴	mm³	kg	kg/m	rpm			
6	0/-12	1.5	2.4	1.22	2.28	0.6	0.5	5.1	59	19.7	0.04	0.21	3,500	SPR 6		
8	0	2.1	3.7	1.45	2.87	1.2	1.14	7.4	190	47.6	0.05	0.38	3,500	SPR 8		
10	-15	4.4	8.2	2.73	5.07	2.4	2.45	18.0	461	92.2	0.09	0.60	3,000	SPR10		
13	0	21	39.2	2.67	4.89	3.0	3.70	13.7	1,380	213	0.17	1.0	1,800	SPR13		
16	-18	60	110	6.12	11.2	5.6	6.70	46	2,980	373	0.33	1.5	1,500	SPR16		
18.2		83	133	7.84	11.3	5.90	7.35	63	5,050	554	0.45	2.0	1,200	SPR20		
23	-21	162	239	12.3	16.1	9.11	11.5	104	12,700	1,110	0.75	3.1	1,000	SPR25		
28		289	412	18.6	23.2	13.2	18.0	181	27,500	1,960	1.25	4.8	800	SPR30		
37.4	0	637	882	30.8	37.5	22.8	32.3	358	87,300	4,670	2.30	8.6	800	SPR40		
47	-25	1,390	3,180	46.1	74.2	27.2	42.1	696	216,000	9,210	3.10	13.1	570	SPR50		
56.5	0/-30	2,100	4,800	58.0	127.4	30.0	48.2	1,300	451,000	16,000	4.70	19	500	SPR60		

*Maximum rotational speed for grease lubrication.

1kN≒102kgf 1N • m≒0.102kgf • m

Contact NB for further information when higher speeds or oil lubrication is required.

